Plant Nutrition Thread

billy4479

Moderator
this thread is dedicated to the greater understanding of plant nutrition,,,,,,,,,,,,,,




Many people confuse plant nutrition with plant fertilization.​
Plant nutrition refers
to the need for basic chemical elements for plant growth.
The term
fertilization refers to the application of plant nutrients to supplement the
nutrients naturally occurring in the soil. Nutrients may be applied as commercial
manufactured fertilizers, organic fertilizers and/or other soil amendments. Organic
fertilizers and soil amendments are typically low in plant-available nutrient
content. For additional information about fertilizers and soil amendments, refer to
the
CMG GardenNotes #232, Understanding Fertilizers, and #241, Soil
Amendments
.

Adequate soil fertility is only one of the many soil-related growth factors.
Fertilizers will increase desirable plant growth only if the plant is deficient in the
nutrient applied and other growth factors are not also significantly limiting plant
growth. Fertilization will not compensate for poor soil preparation, the lack of
water, weed competition and other non-nutrient growth limiting factors!
Fertilization will not enhance desired growth if the nutrients applied are not
deficient.
From the nutritional perspective, a plant cannot tell if applied nutrients come from
a manufactured fertilizer or a natural source. Plants use nutrients in ionic forms.
Soil microorganisms must break down organic soil amendments, organic fertilizers
and many manufactured fertilizers before the nutrients become usable by plants.
From a nutritional perspective, the primary difference between manufactured and
organic soil amendments/organic fertilizers is the speed at which nutrients become
available for plant use. For manufactured fertilizer, their release is typically, but
not always, a few days to weeks. Some are specially formulated as “controlled
release”, “slow release” or “time release” products that release over a period of​
231-2​
months. With natural-organic fertilizer, nutrients typically become available over
a period of months or years. However, there are exceptions to this general rule.
The high salt content of some manufactured fertilizers and some organic soil
amendments could slow the activity of beneficial soil microorganisms.
Benefits of organic fertilizers and soil amendments include improvements in soil
tilth (suitability of the soil to support plant growth). This should not be confused
with “fertilization”, a distinctly different soil management objective. Organic soil
amendments are typically low in nutrient content.
Remember that fertility is only part of the soil’s role in supporting plant growth.
The organic content of the soil also directly affects plant growth due to its
influence on soil tilth and the activity of beneficial soil microorganisms. Relying
solely on manufactured fertilizers is not recommended as this does not support
good soil tilth.​
Plant Nutrients​
Plants need 17 elements for normal growth. Carbon, hydrogen, and oxygen come
from the air and water. Soil is the principle source of other nutrients.​
Primary
nutrients
(nitrogen, phosphorus, and potassium) are used in relatively large
amounts by plants, and often are supplemented as fertilizers.

Secondary nutrients​
(calcium, magnesium, and sulfur) are also used in large
amounts but are typically readily available and in adequate supply.

Micronutrients​
or trace elements are needed only in small amounts. These include
iron, zinc, molybdenum, manganese, boron, copper, cobalt, and chlorine. [Table
1]

Table 1. Essential Plant Nutrients​
Nutrient Ions Absorbed by Plants
Structural elements
Carbon, C CO​
2

Hydrogen, H H​
2O
Oxygen, O O
2

Primary nutrients
Nitrogen, N NO​
3
-
, NH4
+

Phosphorus, P H​
2PO4
-
, HPO4
-2

Potassium, K K​
+

Secondary nutrients
Calcium, Ca Ca​
+2

Magnesium, MG Mg​
+2

Sulfur, S SO​
4
-2

Micronutrients
Boron, B H​
2BO3
-

Chlorine, Cl Cl​
-

Cobalt, Co Co​
+2

Copper, Cu Cu​
+2

Iron, Fe Fe​
+2, Fe+3

Manganese, Mn Mn​
+2

Molybdenum, MO MoO​
4
-2

Zinc, Zn Zn​
+2

231-3​
Roots take up nutrients primarily as​
ions dissolved in the soil’s water. The ions
may be positively charged (
cations) or negatively charged (anions). The nutrient
ion soup in the soil’s water is in a constant state of flux as the variety of ions
dissolve in and precipitate out of solution.
Clay particles and organic matter in the soil are negatively charged, attracting the
positively charged cations (like ammonium, NH
4
+,
and potassium, K+) and making
the cations resistant to leaching. Negatively charged anions (like nitrate, N0
3
-
) are
prone to leaching and can become a water pollution problem. Both ammonium
and nitrate are important plant nitrogen sources and are commonly found in salt
forms in fertilizers.
The
Cation Exchange Capacity, CEC, is a measurement of the soil’s capacity to
hold cation nutrients. More precisely, it is a measurement of the capacity of the
negatively charged clay and organic matter to attract and hold positively charged
cations. CEC is useful in comparing the potential for different soils to hold and
supply nutrients for plant growth.

Colorado Soils and Plant Nutritional Needs​
Nitrogen​
Nitrogen is the one nutrient most often limiting plant growth. The need for
nitrogen varies from plant to plant. For example, tomatoes and vine crops
(cucumbers, squash, and melons) will put on excessive vine growth at the expense
of fruiting with excess nitrogen. Whereas potatoes, corn, and cole crops (cabbage,
broccoli, and cauliflower) are heavy feeders and benefit from high soil nitrogen
levels. Bluegrass turf and many annuals also benefit from routine nitrogen
applications. Trees and shrubs have a low relative need for soil nitrogen.
Colorado soils benefit from nitrogen fertilization of the right amount and
frequency to meet plant needs. General symptoms of nitrogen deficiency are
shown in Table 2 and Figure 1.​
Table 2 & Figure 1. Symptoms of nitrogen deficiency​
Leaves​
•​
Uniform yellowish-green

•​
More pronounced in older leaves

•​
Small, thin leaves

•​
Fewer leaflets

•​
High fall color

•​
Early leaf drop
Shoots

•​
Short, small diameter

•​
May be reddish or reddish brown

Soil tests have limited value in indicating nitrogen needs for a home garden or
lawn since the value is constantly changing due to organic content, microorganism
activity, and changes in temperature and water.​
231-4​
Nitrogen is useable by plants in two forms,​
ammonium (NH4+), and nitrate

(NO​
3
-
). Ammonium, being positively charged, is attracted to the negatively
charged soil particles and thus is resistant to leaching (movement down through the
soil profile). Soil microorganisms convert ammonium to nitrate. Nitrate, being
negatively charged, readily leaches below the root zone with excess rain/irrigation
on sandy soils. Prevent water pollution by avoiding over-fertilization of nitrogen,
particularly on sandy soils.
Soil microorganisms release nitrogen tied-up in organic matter over a period of
time. Release rates from compost are very slow, over a period of years. The need
for nitrogen fertilizer is based on the organic content of the soils. [Table 3]

Table 3.
Need for nitrogen fertilizer based on soil organic content
Routine Application Rate
Soil Organic Content For Gardens​
1% 2 pounds actual N / 1000 square feet
2-3% 1 pound actual N / 1000 square feet
4-5% 0​
Iron​
Iron chlorosis refers to a yellowing of leaves caused by an iron deficiency in the
leaf tissues. Primary symptoms include interveinal chlorosis (i.e., a general
yellowing of leaves with veins remaining green). Symptoms show first and more
pronounced on younger leaves on the new growth. In severe cases, leaves may
become pale yellow or whitish, but veins retain a greenish tint. Angular shaped
brown spits may develop between veins and leave margins may scorch (brown
along the edge). Symptoms may show on a single branch or on the entire tree.
General symptoms of iron chlorosis are shown in Table 3 and Figure 2.​
Table 3 & Figure 2. Symptoms of iron chlorosis​
Leaves​
•​
General yellowing of leaf with veins
remaining green

•​
More pronounced in younger leaves and
new growth

•​
Angular brown spots and marginal scorch

•​
Smaller

•​
Curl, dry up and fall early
Branches

•​
May show on a single branch or the entire
plant
231-5

In western, high pH soils, iron is not deficient; but rather unavailable for plant
uptake due to the soil’s high lime (calcium carbonate) content. In western soils,
iron chlorosis is a general symptom of other problems, including the following:​
•​
Springtime over-watering is the primary cause of iron chlorosis in
western soils! Attention to irrigation management, with season changes of
the irrigation controller, will generally correct iron chlorosis.

•​
Soil compaction and low soil oxygen contributes to iron chlorosis.

•​
Iron chlorosis is an early symptom of trunk girdling roots (caused by
planting tree too deep).

•​
Iron chlorosis expresses as a complication of winter trunk/bark injury.
Attention to these contributing factors is much more effective than adding iron
products. For additional details on dealing with iron chlorosis, refer to
CMG
GardenNotes
#223, Iron Chlorosis.

Phosphorus​
Note:​
Phosphorus, P, is a primary nutrient in plant growth. The word phosphate, P2O5,

refers to the ionic compound containing two atoms of phosphorus and five atoms of
oxygen. The​
phosphorus content of fertilizer is measured in percent phosphate.

Phosphorus levels are naturally adequate in the majority of Colorado soils.
Deficiencies are most likely to occur in new gardens where the organic matter
content is low and the soil has a high pH (7.8 to 8.3).​
A soil test is the best
method to determine the need for phosphorus fertilizers.
Phosphorus is also less available to plants when soil temperatures are cool. In the
spring, the use of starter fertilizers with phosphorus may be beneficial on
herbaceous flowers and vegetable transplants.
Phosphorus deficiency is difficult to diagnose, since other growth factors will give
similar symptoms. General symptoms include sparse, green to dark green leaves.
Veins, petioles, and lower leaf surface may be reddish, dull bronze, or purple,
especially when young. Phosphorus deficiency may be observed on roses, in the
early spring when soils are cold, but the condition corrects itself as soils warm.
Excessive phosphorus fertilizer can aggravate iron and zinc deficiencies and
increase the soil salt content. Many home gardener soils are significantly over
fertilized with phosphates, aggravating soil salts and iron chlorosis.

Potassium​
Note:​
Potassium, K, is a primary nutrient in plant growth. The word potash, K2O, refers
to the ionic compound containing two atoms of potassium and one atom of oxygen.
The potassium content of fertilizer is measured in percent potash.

Potassium levels are naturally adequate and even high in most Colorado soils.
Deficiencies occasionally occur in new gardens low in organic matter and in
sandy soils low in organic matter.​
A soil test is the best method to determine the
need for potassium fertilizers.

231-6​
Potassium deficiency is very difficult to diagnose, since other growth factors will
give similar symptoms. General symptoms include a marginal and interveinal
chlorosis (yellowing), followed by scorching that moves inward. Older leaves are
affected first. Leaves may crinkle and roll upward. Shoots may show short,
bushy, zigzag growth, with dieback late in season.
Excessive potash fertilizer can aggravate soil salt levels. Many home garden soils
are over fertilized with potash, leading to salt problems.​
Zinc​
Zinc deficiency occasionally occurs on sandy soils containing excessive lime, and
soils low in organic matter (typical of new yards where the topsoil has been
removed). Excessive phosphate fertilization may aggravate a zinc problem. It will
be seen more in years with cold wet springs.
Sweet corn, beans, and potatoes are the most likely vegetables to be affected.
Symptoms include a general stunting of the plant due to shortening of internodes
(stem length between leaves). Leaves on beans typically have a crinkled
appearance and may become yellow or brown. On young corn, symptoms include
a broad band of white–to-translucent tissue on both sides of the leaf midrib starting
near the base of the leaf, but generally not extending to the tip.
Occasional manure applications will supply the zinc needs. If a soil test indicates
zinc deficiency (less than 10 ppm), apply a zinc-containing fertilizer according to​
label directions (typically 2-4 ounces per 1,000 sq. ft.).
 

harryhood

Active Member
Whew can't believe no one has commented, some nice info in there thanks! Did you write that? Plus rep either way.
 
Top