mogie
Well-Known Member
Contributed by: ranger2000
Submitted: 25-07-2003
Submitted: 25-07-2003

Every serious growing box needs cooling. Most of us use air cooling because it is cheap and very effective. The following steps are used to design a simple fan-cooled box.
This method does not cover active cooling with air conditioning systems or 'CoolTube' designs. It is for grow chambers where the walls are approximately equal to the light pattern, totally enclosed for airflow control, and do not have large radiant heat into or out of the box. Your mileage may vary some for these reasons.
I also picked sane defaults for growing conditions. The formulas

Design
1) Start at the beginning and design this right! Before you ever buy or cut anything for your new project, determine the highest temp (in F) your intake air will ever be when lights run. Get a thermometer and measure it to make sure you have a good value. Call this T(inlet)
2) Use these formulas to determine difference in temp you can tolerate. 81F (27F) is about the optimal for growing, 86F/30C on the higher end.
Tdiff = 81F - T(inlet) (English)
Tdiff = 27C - T(inlet) (Metric)
3) Add up wattage for all power in your box. Lights, pumps, heaters, humidifier, radio, coffee pot, whatever. Add it all up and call it Watts. This will make your number worst-case and therefore a conservative value.
4) Compute the absolute minimum fan power you will need using the following formulas. This is the minimum fan rating you must have to achieve your temperature goals. You will have to increase fan power to compensate for duct constrictions, small inlets, carbon scrubbers, screens, or other items that block airflow.
CFM = 3.16 x Watts / Tdiff (English)
CMH = 2.98 x Watts / Tdiff (Metric)
The formulas are almost identical, due to the counteracting effects of converting airflow from CFM to CMH, and converting temp from Fahrenheit to Centigrade.