Gonna try out & Use a 600W HPS for whole Grow!!!!

Implying that applies to all bulbs in the world.

It doesn't mean every hid bulb runs at 752 degrees but its a very good indication that in general MH and HPS run at the same temperature. This was the information I got when I emailed Eye Hortilux personally last time this topic came up rather than listening to all the bullshit in these forums.
 
It doesn't mean every hid bulb runs at 752 degrees but its a very good indication that in general MH and HPS run at the same temperature. This was the information I got when I emailed Eye Hortilux personally last time this topic came up rather than listening to all the bullshit in these forums.
Well, first off, I EXPERIENCED this temperature difference firsthand as did Trousers. I didn't listen to anyone or READ about it. Clearly there's going to be differences in say a $20 bulb vs. $150 bulb and such as the way the light is produced is different. As well as high vs low efficiency materials as somewhat mentioned before.

Anyway this has nothing to do with the topic at hand so lets fuck off with this :p
 
you might reread what he wrote.
Of corse a 600w bulb is going to create more heat than a 400w bulb, anyone with half a brain knows that...


Straight from Eye Hortilux....

1000w Super HPS = 752° F
1000w Standard Metal Halide = 752° F
agree that fucking off is a good idea
 
Of corse a 600w bulb is going to create more heat than a 400w bulb, anyone with half a brain knows that...


Straight from Eye Hortilux....

1000w Super HPS = 752° F
1000w Standard Metal Halide = 752° F


Anyone with half a brain can comprehend what I wrote.

My 600 watt HPS ran much cooler than my 400 watt mh.
I do not believe for a second that a mh and hps run at exactly the same temp, no matter what hortilux says.
 
Believe whatever you want, I don't notice temp changes when I change my bulbs ever. Hortilux is one of the biggest / best horticulture light manufacturers in the game, I think they know what they are talking about. If you want to add in all sorts of variables and using bulbs from different manufacturers I'm sure you'll get various results....
 
Below are the results of a simple google search. "I did not do this experiment, but it should shed some light "get it LOL" on the discussion."

Peace!


[SIZE=+1][SIZE=+2] Watts, Heat and Light : Measuring The Heat Output of Different Lamps[/SIZE][/SIZE]
This experiment was intended to measure the way in which different “types” of lamps of the same wattage produce drastically different basking temperatures.
[SIZE=+1]Introduction[/SIZE]
One of the basic laws of physics is the law of the Conservation of Energy. This simply states that energy cannot be created or destroyed, it can only be transferred from one form to another. So when a 100watt lamp is switched on, 100 watts of electrical energy is converted to 100watts of light and heat; a 50watt lamp produces a total 50 watts of light and heat, and so on.* However, some lamps are more efficient at producing light than others; this determines how much of that 100 watts is transformed into light, and how much is "wasted" and comes out as heat (very useful, though, if what we want is a basking lamp).
An incandescent lamp is an extremely inefficient light source. According to the Wikipedia online encyclopaedia, a 100 watt bulb is 2.1% efficient. In other words, it produces about 2 watts of light and 98 watts of heat.
A halogen lamp is a bit better. For every 100 watts you put in, you get about 3.5 watts of light and 96.5 watts of heat.
Fluorescent lamps are said to be about 8.2% efficient, and although there were no figures on Wikipedia for mercury vapour lamps, I found one reference saying they were about as efficient as fluorescent lamps, and another that said they were three times as efficient as incandescent lamps... so we're looking at 6 - 8% efficiency here. 100 watts of electricity will be converted to, at most 8 watts of light (including UV light) and 92% will still come out as heat.
So the main factors which determine how much heat a lamp puts out, are what type of lamp it is, and its wattage.
However, the heat and light from a lamp can be emitted in all directions, or focused on a small area (consider the heat and light you might experience sitting 2ft below a 60 watt frosted "globe" lamp as opposed to a 60 watt narrow beam spot lamp) hence the shape of the lamp, the type of glass surface and the presence or absence of reflectors, such are found inside spot lamps, will also play a major part in determining how hot a basking spot gets directly under any lamp, of whatever wattage.
[TABLE="width: 97%"]
[TR]
[TD]
lampsontest.jpg
[/TD]
[TD]
heatmeasurement1.jpg
[/TD]
[/TR]
[/TABLE]
[SIZE=+1]
heatmeasurement3.jpg
The Experiment.
[/SIZE]

In this experiment we used a “heat collector” that consisted of a small metal disc painted flat black. This is the most efficient form of material to absorb the light and heat energy. This was placed on top of a white styrofoam block that would not absorb much heat. This was positioned at 12” (30cm) from the light source.
tempgun.jpg
We collected data at 2, 5 and 10 minutes using an infra-red "temperature gun". We also took temperature readings at the base of the fixture to see how much heat energy was being lost out the back of the lamps. The fixtures were allowed to cool before the next set of readings were recorded.

Understand that the temperatures reported do not necessarily represent the actual temperatures you may find in your vivarium, produced by the lamps listed, because different materials will reflect and absorb heat at different rates. The small black metal discs we used will absorb heat differently, and give different results, from a light brown basking log, or white sand, or a living reptile body. Living creatures will disperse heat through their body according to mass. Always triple check basking area temperatures before allowing any reptiles to be exposed to new lamps.

[SIZE=+1]Results[/SIZE]
[TABLE="width: 100%"]
[TR="bgcolor: #ffffcc"]
[TD]MAKE[/TD]
[TD]WATTS[/TD]
[TD]TYPE of BULB[/TD]
[TD="colspan: 3"]TEMP (°F) @ 12"[/TD]
[TD="colspan: 3"]TEMP (°F) of Lamp Fixture[/TD]
[/TR]
[TR="bgcolor: #ffffcc"]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[TD]2 min[/TD]
[TD]5 min[/TD]
[TD]10 min[/TD]
[TD]2 min[/TD]
[TD]5 min[/TD]
[TD]10min[/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]ZooMed[/TD]
[TD]150[/TD]
[TD]Infra-red Spot[/TD]
[TD]149[/TD]
[TD]159[/TD]
[TD]171[/TD]
[TD]77[/TD]
[TD]80[/TD]
[TD]82[/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]ZooMed[/TD]
[TD]160[/TD]
[TD]MV Flood 'Powersun'[/TD]
[TD]96[/TD]
[TD]106[/TD]
[TD]115[/TD]
[TD]85[/TD]
[TD]95[/TD]
[TD]102[/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]Westron[/TD]
[TD]160[/TD]
[TD]MV Flood 'MegaRay SB'[/TD]
[TD]98[/TD]
[TD]112[/TD]
[TD]128[/TD]
[TD]74[/TD]
[TD]77[/TD]
[TD]84[/TD]
[/TR]
[TR="bgcolor: #ffffcc"]
[TD]ESU[/TD]
[TD]150[/TD]
[TD]Incandescent 'Nocturnal BL' [/TD]
[TD]143[/TD]
[TD]164[/TD]
[TD]165[/TD]
[TD]100[/TD]
[TD]118[/TD]
[TD]118[/TD]
[/TR]
[TR="bgcolor: #ffffcc"]
[TD]ESU [/TD]
[TD]150[/TD]
[TD]Incandescent 'Brightlight'[/TD]
[TD]191[/TD]
[TD]209[/TD]
[TD]218[/TD]
[TD]75[/TD]
[TD]77[/TD]
[TD]79[/TD]
[/TR]
[TR="bgcolor: #ffffcc"]
[TD]ZooMed[/TD]
[TD]150[/TD]
[TD]Flood 'Basking Lamp'[/TD]
[TD]181[/TD]
[TD]186[/TD]
[TD]195[/TD]
[TD]105[/TD]
[TD]114[/TD]
[TD]123[/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]ZooMed[/TD]
[TD]100[/TD]
[TD]MV Flood 'Powersun'[/TD]
[TD]118[/TD]
[TD]131[/TD]
[TD]136[/TD]
[TD]98[/TD]
[TD]116[/TD]
[TD]118[/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]T Rex[/TD]
[TD]100[/TD]
[TD]MV Spot 'Active UV Heat'[/TD]
[TD]93[/TD]
[TD]114[/TD]
[TD]136[/TD]
[TD]84[/TD]
[TD]102[/TD]
[TD]113[/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]ESU[/TD]
[TD]100[/TD]
[TD]Incandescent 'Nightlight'[/TD]
[TD]134[/TD]
[TD]150[/TD]
[TD]152[/TD]
[TD]78[/TD]
[TD]80[/TD]
[TD]83[/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]ESU[/TD]
[TD]100[/TD]
[TD]Incandescent 'Brightlight'[/TD]
[TD]165[/TD]
[TD]188[/TD]
[TD]194[/TD]
[TD]77[/TD]
[TD]79[/TD]
[TD]81[/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]ACE[/TD]
[TD]100[/TD]
[TD]Halogen Flood[/TD]
[TD]205[/TD]
[TD]226[/TD]
[TD]226[/TD]
[TD]77[/TD]
[TD]82[/TD]
[TD]86[/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]ZooMed[/TD]
[TD]100[/TD]
[TD]Ceramic Heat Emitter[/TD]
[TD]101[/TD]
[TD]127[/TD]
[TD]140[/TD]
[TD]75[/TD]
[TD]99[/TD]
[TD]104[/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]GE[/TD]
[TD]100[/TD]
[TD]Halogen Spot Lamp[/TD]
[TD]158[/TD]
[TD]257[/TD]
[TD]271[/TD]
[TD]75[/TD]
[TD]82[/TD]
[TD]87[/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]GE[/TD]
[TD]100[/TD]
[TD]Halogen Flood Lamp[/TD]
[TD]128[/TD]
[TD]178[/TD]
[TD]187[/TD]
[TD]74[/TD]
[TD]86[/TD]
[TD]88[/TD]
[/TR]
[TR="bgcolor: #ffffcc"]
[TD]GE[/TD]
[TD]75[/TD]
[TD]Incandescent Spot 'Black Light'[/TD]
[TD]92[/TD]
[TD]101[/TD]
[TD]103[/TD]
[TD]89[/TD]
[TD]96[/TD]
[TD]97[/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]GE[/TD]
[TD]60[/TD]
[TD]Incandescent 'Black Light'[/TD]
[TD]102[/TD]
[TD]109[/TD]
[TD]112[/TD]
[TD]93[/TD]
[TD]94[/TD]
[TD]105[/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]GE[/TD]
[TD]60[/TD]
[TD]Incandescent Clear Glass[/TD]
[TD]169[/TD]
[TD]176[/TD]
[TD]178[/TD]
[TD]75[/TD]
[TD]81[/TD]
[TD]86[/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]Westron[/TD]
[TD]60[/TD]
[TD]Inline MV Flood Lamp[/TD]
[TD]95[/TD]
[TD]97[/TD]
[TD]103[/TD]
[TD]90[/TD]
[TD]93[/TD]
[TD]98[/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]Westron [/TD]
[TD]60[/TD]
[TD]Inline MV Spot Lamp[/TD]
[TD]130[/TD]
[TD]146[/TD]
[TD]150[/TD]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[/TR]
[TR="bgcolor: #cccccc"]
[TD]Westron [/TD]
[TD]60[/TD]
[TD]Heat Emitter[/TD]
[TD]98[/TD]
[TD]112[/TD]
[TD]130[/TD]
[TD]77[/TD]
[TD]79[/TD]
[TD]80[/TD]
[/TR]
[TR="bgcolor: #ffffcc"]
[TD]GE[/TD]
[TD]50[/TD]
[TD]Halogen Spot Lamp[/TD]
[TD]185[/TD]
[TD]193[/TD]
[TD]196[/TD]
[TD]76[/TD]
[TD]85[/TD]
[TD]88[/TD]
[/TR]
[TR="bgcolor: #ffffcc"]
[TD]GE[/TD]
[TD]50[/TD]
[TD]Halogen Flood Lamp[/TD]
[TD]123[/TD]
[TD]138[/TD]
[TD]141[/TD]
[TD]74[/TD]
[TD]78[/TD]
[TD]81[/TD]
[/TR]
[/TABLE]

[SIZE=+1]Additional Experiment[/SIZE]
This experiment dramatically demonstrates the difference in heat output between a 60 watt externally ballasted mercury vapour lamp and a 60 watt halogen lamp.
We placed a 60 watt external ballasted mercury vapor lamp and a 60 watt halogen lamp in two separate insulated boxes with a thermometer inside. If both lamps put out roughly the same amount of heat, these two lamps should have effectively raised the temperature in both boxes to the same degree. After 30 minutes, the thermometer in the container with the halogen lamp gave a reading 20°F higher than the other box, (135°F vs 115 °F) and the heat from the halogen lamp had actually warped the plastic!
[TABLE="width: 90%"]
[TR]
[TD="width: 49%"]
insulationbox1.jpg
[/TD]
[TD="width: 3%"]
insulationbox2.jpg
[/TD]
[TD="width: 48%"]
meltedthermometer.jpg
[/TD]
[/TR]
[/TABLE]
[SIZE=+1]Another reason for not using the wattage of a lamp as a guide to its heat output.[/SIZE]
Even though we expect the stated wattage on a bulb to be correct, there is always the possibility that it isn’t. We have had several imported mercury vapor lamps tested for wastage and have found that there are some that have been stated as 60 watt yet under investigation were actually 150 watt bulbs. Once again, I can’t express enough the importance of checking basking area temperatures and never relay on the wattage of the lamp to speculate on temperatures they will produce.
Bob MacCargar
January 2006
* well, nothing's as perfect as that.. but that's the general idea.
 
See my avatar? That was done (and many others) with ONLY HPS from start to finish. I've germed with 4' fluor tubes which worked well too but quickly moved them under a regular 600W HPS. The only reason to flip flop from say....MH to HPS is to keep the pocketbooks of the hydro shysters nice and fat and maintain another lame forum paradigm. Blind leading the blind.

Both lamps are full spectrum. Do the experiment yourself..... so you'll know better.

The use of HPS exclusively does not induce longer internodes.

I've vegged under both lamp types with identical clones, and can definitely say MH produces shorter internodes during the veg cycle. IMO, either one is fine, but I give the slight edge in veg to MH.

Of course MH will always run hotter than HPS. It's simple physics really. MH produces less light output, and therefore more heat.
 
I've vegged under both lamp types with identical clones, and can definitely say MH produces shorter internodes during the veg cycle.

I'm real happy for you. Now see my Tweeks for some facts regarding what elemental combos produce tall versus compact plants.

UB
 
I veg with my 600 watt hps and my plants are too bushy. I would like them to stretch a bit. I actually moved the light up a bit. My internodes are stacked.

Even my lamb's breath has short internodes.
 
I'm real happy for you. Now see my Tweeks for some facts regarding what elemental combos produce tall versus compact plants.

UB

Thanks, but I already have that worked out. The fact that HPS produces longer internodes doesn't automatically mean I have a problem. "Longer" is not the same as "too long".

Once you realize that you don't in fact know more than everyone else is the day you will truly begin learning.
 
I veg with my 600 watt hps and my plants are too bushy. I would like them to stretch a bit. I actually moved the light up a bit. My internodes are stacked.

Even my lamb's breath has short internodes.

Get away from indica genes. I too have had mutts like that. You want stacked nodes? This Peak19 (male parent) had internodes about 1/4" apart, until the stretch. Leaves were as big as dinner plates. This plant is only 3 weeks old from the time that the cotyledons popped the soil's surface.

P19MaleParent!@3weeks.jpg
 
Get away from indica genes. I too have had mutts like that. You want stacked nodes? This Peak19 (male parent) had internodes about 1/4" apart, until the stretch. Leaves were as big as dinner plates. This plant is only 3 weeks old from the time that the cotyledons popped the soil's surface.

View attachment 2432608

Mutts are the best.
One of the plants is Lamb's Breath, almost full sativa. The other is Grape Ape a hybrid. The internodes are stacked. When you veg with a 600 watt bulb, even if it is an HPS, the internodes are going to be tight. If I grew the same plants under a t5 the internodes would be much farther apart. Stacked internodes is a good problem.


I do not like a lot of sativas. If I smoke them in the morning I need a nap at 3. Haze will put me to sleep. Hate it unless it is mixed with something, then I love it.
 
Back
Top