In our study, irradiation had a measurable effect on the content of multiple cannabis terpenes, mainly on the more volatile monoterpenes. Reduction of affected terpenes was in general between 10 and 20%, but for some components this may be as much as 38%. In a previous study evaluating the effect of gamma irradiation on fresh Cilantro, a decrease in terpene content was also described (Fan and Sokorai, 2002). However, the authors concluded that the observed loss of terpenes such as myrcene and linalool was insignificant compared to the losses that occurred by evaporation during refrigerated storage of Cilantro. Also in orange juice the effect of irradiation on terpenes was found to be non-significant in comparison to changes induced by refrigerated storage (Fan and Gates, 2001). Likewise, the slight terpene reduction observed in the current study is comparable to the effect that short term storage in a paper bag had on cannabis samples, in a study performed by (Ross and ElSohly, 1996). A likely explanation therefore seems that gamma irradiation slightly accelerates the evaporation of some of the more volatile terpenes. This idea is supported by the fact that no degradation products or additional chromatographic peaks were found to account for the lost terpenes, with the exception of some beta-caryophyllene oxide formed in the irradiated sample of variety Bedica. Interestingly, terpenes were not affected to the same degree in all varieties, e.g., myrcene content was clearly reduced in varieties Bedica and Bedrolite but not in variety Bediol. Perhaps this indicates a protective effect that cannabis components may have on each other when present in specific proportions.